SS-CA-APPLE:什么是复数项幂级数?

数学原理
目 录
Contents
幂级数
收敛圆与收敛半径
幂级数运算和性质
应用举例
幂级数收敛范
围与和函数
函数展成幂级数
求幂级数收敛半径
幂级数相减
信号与系统
z变换与幂级数
作业练习
幂级数的收敛半径
展成幂级数

§01 学原理


1.1 幂级数

1.1.1 复变函数项级数

  设 { f n ( z ) } ( n = 1 , 2 , ⋯ ) \left\{ {f_n \left( z \right)} \right\}\left( {n = 1,2, \cdots } \right) { fn(z)}(n=1,2,) 为复变函数序列,其中各项在 D D D 内有定义,级数 ∑ n = 1 ∞ f n ( z ) = f 1 ( z ) + f 2 ( z ) + ⋯ + f n ( z ) + ⋯ \sum\limits_{n = 1}^\infty {f_n \left( z \right)} = f_1 \left( z \right) + f_2 \left( z \right) + \cdots + f_n \left( z \right) + \cdots n=1fn(z)=f1(z)+f2(z)++fn(z)+ 称为复变函数项级数,记做 ∑ n = 1 ∞ f n ( z ) \sum\limits_{n = 1}^\infty {f_n \left( z \right)} n=1fn(z) ,级数的部分和为 s n ( z ) = ∑ k = 1 n f k ( z ) = f 1 ( z ) + f 2 ( z ) + ⋯ + f n ( z ) s_n \left( z \right) = \sum\limits_{k = 1}^n {f_k \left( z \right)} = f_1 \left( z \right) + f_2 \left( z \right) + \cdots + f_n \left( z \right) sn(z)=k=1nfk(z)=f1(z)+f2(z)++fn(z)

D D D 内的某一点 z 0 z_0 z0 ,如果极限 lim ⁡ n → ∞ s n ( z 0 ) = s ( z 0 ) \mathop {\lim }\limits_{n \to \infty } s_n \left( {z_0 } \right) = s\left( {z_0 } \right) nlimsn(z0)=s(z0) 存在,则称为复变函数项级数在 z 0 z_0 z0 收敛。如果级数在 D D D 内处处收敛,则定义 s ( z ) = f 1 ( z ) + f 2 ( z ) + ⋯ + f n ( z ) + ⋯ s\left( z \right) = f_1 \left( z \right) + f_2 \left( z \right) + \cdots + f_n \left( z \right) + \cdots s(z)=f1(z)+f2(z)++fn(z)+ 为级数 ∑ n = 1 ∞ f n ( z ) \sum\limits_{n = 1}^\infty {f_n \left( z \right)} n=1fn(z) 的和函数。

1.1.2 幂级数

  当 f n = c n − 1 ( z − a ) n − 1 f_n = c_{n - 1} \left( {z - a} \right)^{n - 1} fn=cn1(za)n1 时,级数 ∑ n = 0 ∞ c n ( z − a ) n = c 0 + c 1 ( z − a ) 1 + c 2 ( z − a ) n + ⋯ \sum\limits_{n = 0}^\infty {c_n \left( {z - a} \right)^n } = c_0 + c_1 \left( {z - a} \right)^1 + c_2 \left( {z - a} \right)^n + \cdots n=0cn(za)n=c0+c1(za)1+c2(za)n+ 称为幂级数

1.1.3 阿贝尔定理

如果级数 ∑ n = 0 ∞ c n z n \sum\limits_{n = 0}^\infty {c_n z^n } n=0cnzn z = z 0 ( ≠ 0 ) z = z_0 \left( { \ne 0} \right) z=z0(=0) 收敛,那么对于满足 ∣ z ∣ < ∣ z 0 ∣ \left| z \right| < \left| {z_0 } \right| z<z0 z z z ,级数必绝对收敛。如果在 z = z 0 z = z_0 z=z0 处级数发散,那么对于 ∣ z ∣ > ∣ z 0 ∣ \left| z \right| > \left| {z_0 } \right| z>z0 z z z 技术必发散。

1.2 收敛圆与收敛半径

  幂级数收敛情况包括:

  • 如果技术对于所抱有的正实数都是收敛,那么在复平面内处处绝对收敛;
  • 对于所有正实数除 z = 0 z = 0 z=0 之外都是发散,技术在复平面内出原点外都是处处发散;
  • 存在正实数 R > 0 R > 0 R>0 ,在以 R R R 为半径的圆内复数,级数都收敛;在圆外技术发散。 R R R 称为技术的收敛半径。

▲ 图1.2.1 级数收敛半径

▲ 图1.2.1 级数收敛半径

1.2.1 收敛半径求解方法

(1)比值方法

如果 lim ⁡ n → ∞ ∣ c n + 1 c n ∣ = λ ≠ 0 \mathop {\lim }\limits_{n \to \infty } \left| { { {c_{n + 1} } \over {c_n }}} \right| = \lambda \ne 0 nlimcncn+1=λ=0 那么收敛半径 R = 1 / λ R = 1/\lambda R=1/λ

(2)根值方法

如果 lim ⁡ n → ∞ ∣ c n ∣ 1 / n = μ ≠ 0 \mathop {\lim }\limits_{n \to \infty } \left| {c_n } \right|^{1/n} = \mu \ne 0 nlimcn1/n=μ=0 那么收敛半径 R = 1 / μ R = 1/\mu R=1/μ

1.3 幂级数运算和性质

1.3.1 幂级数和差积

两个幂级数可以进行相加、相减、相乘运算。 f ( z ) = ∑ n = 0 ∞ a n z n , R = r 1 ;    g ( z ) = ∑ n = 0 ∞ b n z n , R = r 2 f\left( z \right) = \sum\limits_{n = 0}^\infty {a_n z^n } ,R = r_1 ;\,\,g\left( z \right) = \sum\limits_{n = 0}^\infty {b_n z^n } ,R = r_2 f(z)=n=0anzn,R=r1;g(z)=n=0bnzn,R=r2 那么 f ( z ) ± g ( z ) = ∑ n = 0 ∞ a n z n ± ∑ n = 0 ∞ b n z n = ∑ n = 0 ∞ ( a n ± b n ) z n ,    ∣ z ∣ < R f\left( z \right) \pm g\left( z \right) = \sum\limits_{n = 0}^\infty {a_n z^n } \pm \sum\limits_{n = 0}^\infty {b_n z^n } = \sum\limits_{n = 0}^\infty {\left( {a_n \pm b_n } \right)z^n } ,\,\,\left| z \right| < R f(z)±g(z)=n=0anzn±n=0bnzn=n=0(an±bn)zn,z<R f ( z ) g ( z ) = ( ∑ n = 0 ∞ a n z n ) ⋅ ( ∑ n = 0 ∞ b n z n ) = ∑ n = 0 ∞ ( a 0 b n + a 1 b n − 1 + ⋯ + a n b 0 ) z n ,    ∣ z ∣ < R f\left( z \right)g\left( z \right) = \left( {\sum\limits_{n = 0}^\infty {a_n z^n } } \right) \cdot \left( {\sum\limits_{n = 0}^\infty {b_n z^n } } \right) = \sum\limits_{n = 0}^\infty {\left( {a_0 b_n + a_1 b_{n - 1} + \cdots + a_n b_0 } \right)z^n } ,\,\,\left| z \right| < R f(z)g(z)=(n=0anzn)(n=0bnzn)=n=0(a0bn+a1bn1++anb0)zn,z<R 其中,在一般情况下 R = min ⁡ ( r 1 , r 2 ) R = \min \left( {r_1 ,r_2 } \right) R=min(r1,r2)

1.3.2 和函数性质

  设幂级数 ∑ n = 0 ∞ c n ( z − z 0 ) n \sum\limits_{n = 0}^\infty {c_n \left( {z - z_0 } \right)^n } n=0cn(zz0)n 的收敛半径为 R R R ,那么

  (1) 它的和函数 f ( ) f\left( {} \right) f() ,即 f ( z ) = ∑ n = 0 ∞ c n ( z − z 0 ) n f\left( z \right) = \sum\limits_{n = 0}^\infty {c_n \left( {z - z_0 } \right)^n } f(z)=n=0cn(zz0)n 是收敛圆: ∣ z − z 0 ∣ < R \left| {z - z_0 } \right| < R zz0<R 内的解析函数;

  (2) f ( z ) f\left( z \right) f(z) 在收敛圆内的导数可以由其幂级数逐项求导获得,即 f ′ ( z ) = ∑ n = 1 ∞ n c n ( z − z 0 ) n − 1 f'\left( z \right) = \sum\limits_{n = 1}^\infty {nc_n \left( {z - z_0 } \right)^{n - 1} } f(z)=n=1ncn(zz0)n1

  (3) f ( z ) f\left( z \right) f(z) 在收敛圆内可以逐项积分,即 ∫ C f ( z ) d z = ∑ n = 0 ∞ c n ∫ C ( z − z 0 ) n d z = ∑ n = 0 ∞ c n n + 1 ( z − z 0 ) n + 1 \int_C {f\left( z \right)dz} = \sum\limits_{n = 0}^\infty {c_n \int_C {\left( {z - z_0 } \right)^n dz} } = \sum\limits_{n = 0}^\infty { { {c_n } \over {n + 1}}\left( {z - z_0 } \right)^{n + 1} } Cf(z)dz=n=0cnC(zz0)ndz=n=0n+1cn(zz0)n+1 其中 C ∈ ∣ z − z 0 ∣ < R C \in \left| {z - z_0 } \right| < R Czz0<R

§02 用举例


2.1 幂级数收敛范围与和函数

  求幂级数 ∑ n = 0 ∞ z n = 1 + z + z 2 + ⋯ + z n + ⋯ \sum\limits_{n = 0}^\infty {z^n } = 1 + z + z^2 + \cdots + z^n + \cdots n=0zn=1+z+z2++zn+ 的收敛范围与和函数。

求解: 级数的部分和函数为 s n = 1 + z + z 2 + ⋯ + z n = 1 − z n 1 − z , ( z ≠ 0 ) s_n = 1 + z + z^2 + \cdots + z^n = { {1 - z^n } \over {1 - z}},\left( {z \ne 0} \right) sn=1+z+z2++zn=1z1zn,(z=0) ∣ z ∣ < 1 \left| z \right| < 1 z<1 时,由于 lim ⁡ z → ∞ z n = 0 \mathop {\lim }\limits_{z \to \infty } z^n = 0 zlimzn=0 ,从而 lim ⁡ n → ∞ s n = 1 1 − z \mathop {\lim }\limits_{n \to \infty } s_n = {1 \over {1 - z}} nlimsn=1z1 ,即 ∣ z ∣ < 0 \left| z \right| < 0 z<0 时技术 ∑ n = 0 ∞ z n \sum\limits_{n = 0}^\infty {z^n } n=0zn 收敛,和函数为 1 1 − z {1 \over {1 - z}} 1z1

∣ z ∣ ≥ 1 \left| z \right| \ge 1 z1 时,由于 n → ∞ n \to \infty n 级数的一般项趋于0,故级数发散。所以技术的收敛范围是 ∣ z ∣ < 1 \left| z \right| < 1 z<1 ,收敛半径 R = 1 R = 1 R=1 。在收敛半径内,技术为决定收敛,并有 1 1 − z = 1 + z + z 2 + ⋯ + z n + ⋯ {1 \over {1 - z}} = 1 + z + z^2 + \cdots + z^n + \cdots 1z1=1+z+z2++zn+

2.2 函数展成幂级数

  把函数 1 z − b {1 \over {z - b}} zb1 表示成 ∑ n = 0 ∞ c n ( z − a ) n \sum\limits_{n = 0}^\infty {c_n \left( {z - a} \right)^n } n=0cn(za)n 的幂级数,其中 a a a b b b 是不相等的复常数。

  求解: 根据上面 1 1 − z {1 \over {1 - z}} 1z1 的可以展开成 ∑ n = 0 ∞ z n \sum\limits_{n = 0}^\infty {z^n } n=0zn 形式,所以将 1 z − b {1 \over {z - b}} zb1 写成 1 1 − z {1 \over {1 - z}} 1z1 的形式。 1 z − b = 1 ( z − a ) − ( a − b ) = − 1 b − a ⋅ 1 1 − z − a b − a {1 \over {z - b}} = {1 \over {\left( {z - a} \right) - \left( {a - b} \right)}} = - {1 \over {b - a}} \cdot {1 \over {1 - { {z - a} \over {b - a}}}} zb1=(za)(ab)1=ba11baza1 因此 1 z − b = − 1 b − a ∑ n = 0 ∞ ( z − a b − a ) n = ∑ n = 0 ∞ − 1 ( b − a ) n + 1 ( z − a ) n {1 \over {z - b}} = - {1 \over {b - a}}\sum\limits_{n = 0}^\infty {\left( { { {z - a} \over {b - a}}} \right)^n } = \sum\limits_{n = 0}^\infty { - {1 \over {\left( {b - a} \right)^{n + 1} }}\left( {z - a} \right)^n } zb1=ba1n=0(baza)n=n=0(ba)n+11(za)n

2.3 求幂级数收敛半径

  求下列幂级数的收敛半径

  (1) ∑ n = 0 ∞ z n n 3 \sum\limits_{n = 0}^\infty { { {z^n } \over {n^3 }}} n=0n3zn 讨论在收敛圆周上的情形;

  (2) ∑ n = 1 ∞ ( z − 1 ) n n \sum\limits_{n = 1}^\infty { { {\left( {z - 1} \right)^n } \over n}} n=1n(z1)n 并讨论 z = 0 , 2 z = 0,2 z=0,2 时的情形;

  (3) ∑ n = 0 ∞ ( cos ⁡ i n ) z n \sum\limits_{n = 0}^\infty {\left( {\cos in} \right)z^n } n=0(cosin)zn

  求解:

  (1) 因为 lim ⁡ n → ∞ ∣ c n + 1 c n ∣ = lim ⁡ n → ∞ ( n n + 1 ) 3 = 1 \mathop {\lim }\limits_{n \to \infty } \left| { { {c_{n + 1} } \over {c_n }}} \right| = \mathop {\lim }\limits_{n \to \infty } \left( { {n \over {n + 1}}} \right)^3 = 1 nlimcncn+1=nlim(n+1n)3=1 lim ⁡ n → ∞ ∣ c n ∣ 1 / n = lim ⁡ n → ∞ ( 1 n 3 ) 1 / n = lim ⁡ n → ∞ 1 n 3 / n = 1 \mathop {\lim }\limits_{n \to \infty } \left| {c_n } \right|^{1/n} = \mathop {\lim }\limits_{n \to \infty } \left( { {1 \over {n^3 }}} \right)^{1/n} = \mathop {\lim }\limits_{n \to \infty } {1 \over {n^{3/n} }} = 1 nlimcn1/n=nlim(n31)1/n=nlimn3/n1=1 所以收敛半径 R = 1 R = 1 R=1

在收敛圆上, ∑ n = 1 ∞ ∣ z n n 3 ∣ = ∑ n = 1 ∞ 1 n 3 \sum\limits_{n = 1}^\infty {\left| { { {z^n } \over {n^3 }}} \right|} = \sum\limits_{n = 1}^\infty { {1 \over {n^3 }}} n=1n3zn=n=1n31 是收敛的。

  (2) lim ⁡ n → ∞ ∣ c n + 1 c n ∣ = lim ⁡ n → ∞ n n + 1 = 1 \mathop {\lim }\limits_{n \to \infty } \left| { { {c_{n + 1} } \over {c_n }}} \right| = \mathop {\lim }\limits_{n \to \infty } {n \over {n + 1}} = 1 nlimcncn+1=nlimn+1n=1 所以收敛半径 R = 1 R = 1 R=1

  (3) 由于 c n = cos ⁡ i n = c h ( n ) = 1 2 ( e n + e − n ) c_n = \cos in = ch\left( n \right) = {1 \over 2}\left( {e^n + e^{ - n} } \right) cn=cosin=ch(n)=21(en+en) 所以 lim ⁡ n → ∞ ∣ c n + 1 c n ∣ = lim ⁡ n → ∞ e n + 1 + e − n − 1 e n + e − n = e \mathop {\lim }\limits_{n \to \infty } \left| { { {c_{n + 1} } \over {c_n }}} \right| = \mathop {\lim }\limits_{n \to \infty } { {e^{n + 1} + e^{ - n - 1} } \over {e^n + e^{ - n} }} = e nlimcncn+1=nlimen+enen+1+en1=e 所以收敛半径 R = 1 / e R = 1/e R=1/e

2.4 幂级数相减

  设有幂级数 ∑ n = 0 ∞ z n \sum\limits_{n = 0}^\infty {z^n } n=0zn ∑ n = 0 ∞ 1 1 + α n z n \sum\limits_{n = 0}^\infty { {1 \over {1 + \alpha ^n }}z^n } n=01+αn1zn 0 < α < 1 0 < \alpha < 1 0<α<1 ),求 ∑ n = 0 ∞ z n − ∑ n = 0 ∞ 1 1 + α n z n = ∑ n = 0 ∞ α n 1 + α n \sum\limits_{n = 0}^\infty {z^n } - \sum\limits_{n = 0}^\infty { {1 \over {1 + \alpha ^n }}z^n } = \sum\limits_{n = 0}^\infty { { {\alpha ^n } \over {1 + \alpha ^n }}} n=0znn=01+αn1zn=n=01+αnαn 的收敛半径。

  求解: 容易验证 ∑ n = 0 ∞ z n \sum\limits_{n = 0}^\infty {z^n } n=0zn ∑ n = 0 ∞ 1 1 + α n z n \sum\limits_{n = 0}^\infty { {1 \over {1 + \alpha ^n }}z^n } n=01+αn1zn 的收敛半径都是1。但 ∑ n = 0 ∞ α n 1 + α n z n \sum\limits_{n = 0}^\infty { { {\alpha ^n } \over {1 + \alpha ^n }}z^n } n=01+αnαnzn 的收敛半径

§03 号与系统


3.1 z变换与幂级数

  在信号与系统中,对于序列 x [ n ] , n = 0 , 1 , 2 , ⋯ x\left[ n \right],n = 0,1,2, \cdots x[n],n=0,1,2, z z z 变换实际上就是一个关于 z z z 的幂级数 X ( z ) = ∑ n = 0 ∞ x [ n ] z − n X\left( z \right) = \sum\limits_{n = 0}^\infty {x\left[ n \right]z^{ - n} } X(z)=n=0x[n]zn

  因此判断 z z z 变换的收敛域,可以使用比值方法根值方法等。

3.1.1 z变换收敛域

  两个序列之间可以进行相加、相乘、卷积等运算,通常情况下,对应的 z z z 变换的收敛域是参与运算的收敛域的并,但在存在零极点抵消的情况下,收敛域存在扩展的情况。

例如 x [ n ] = a n u [ n ] ,    h [ n ] = a n u [ n − m ] ,    y [ n ] = x [ n ] − h [ n ] x\left[ n \right] = a^n u\left[ n \right],\,\,h\left[ n \right] = a^n u\left[ {n - m} \right],\,\,y\left[ n \right] = x\left[ n \right] - h\left[ n \right] x[n]=anu[n],h[n]=anu[nm],y[n]=x[n]h[n] x [ n ] , h [ n ] x\left[ n \right],h\left[ n \right] x[n],h[n] z z z 变换分别为 X ( z ) = 1 1 − a z − 1 , ∣ z ∣ > ∣ a ∣ ,     H ( z ) = a m z − m 1 − a z − 1 , ∣ z ∣ > ∣ a ∣ X\left( z \right) = {1 \over {1 - az^{ - 1} }},\left| z \right| > \left| a \right|,\,\,\,H\left( z \right) = { {a^m z^{ - m} } \over {1 - az^{ - 1} }},\left| z \right| > \left| a \right| X(z)=1az11,z>a,H(z)=1az1amzm,z>a 对应 y [ n ] y\left[ n \right] y[n] z z z 变换 Y ( z ) = X ( z ) − H ( z ) = z m − a m z m − 1 ( z − a ) , ∣ z ∣ > 0 Y\left( z \right) = X\left( z \right) - H\left( z \right) = { {z^m - a^m } \over {z^{m - 1} \left( {z - a} \right)}},\left| z \right| > 0 Y(z)=X(z)H(z)=zm1(za)zmam,z>0

▲ 图3.1.1 发生零极点抵消

▲ 图3.1.1 发生零极点抵消

3.1.2 双向z变换

  数学中定义幂级数都是针对 ∑ n = 0 ∞ c n ( z − a ) n \sum\limits_{n = 0}^\infty {c_n \left( {z - a} \right)^n } n=0cn(za)n 的形式然而对于离散时间信号,可以存在双边 z z z 变换的形式。 X ( z ) = ∑ n = − ∞ + ∞ x [ n ] z − n X\left( z \right) = \sum\limits_{n = - \infty }^{ + \infty } {x\left[ n \right]z^{ - n} } X(z)=n=+x[n]zn 在这种情况下,可以吧双边 z z z 变换看成两个级数的叠加,即右边序列左边序列 z z z 变换。它们的收敛域为两个级数收敛域的并。

§04 业练习


4.1 幂级数的收敛半径

4.1.1 判断题

  幂级数 ∑ n = 0 ∞ c n ( z − 2 ) n \sum\limits_{n = 0}^\infty {c_n \left( {z - 2} \right)^n } n=0cn(z2)n 可否在 z = 0 z = 0 z=0 收敛,而在 z = 3 z = 3 z=3 发散?

4.1.2 求幂级数收敛半径

  求下列幂级数的收敛半径:

( 1 )     ∑ n = 1 ∞ z n n p ,    ( p ∈ N ) ;          ( 2 )     ∑ n = 1 ∞ ( n ! ) 2 n n z n ; \left( 1 \right)\,\,\,\sum\limits_{n = 1}^\infty { { {z^n } \over {n^p }}} ,\,\,\left( {p \in N} \right);\,\,\,\,\,\,\,\,\left( 2 \right)\,\,\,\sum\limits_{n = 1}^\infty { { {\left( {n!} \right)^2 } \over {n^n }}z^n } ; (1)n=1npzn,(pN);(2)n=1nn(n!)2zn; ( 3 ) ∑ n = 0 ∞ ( 1 + i ) n z n ;                  ( 4 )     ∑ n = 1 ∞ e i π n z n ; \left( 3 \right)\sum\limits_{n = 0}^\infty {\left( {1 + i} \right)^n z^n } ;\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 4 \right)\,\,\,\sum\limits_{n = 1}^\infty {e^{i{\pi \over n}} z^n } ; (3)n=0(1+i)nzn;(4)n=1einπzn; ( 5 )     ∑ n = 1 ∞ c h ( i n ) ( z − 1 ) n ;     ( 6 )     ∑ n = 1 ∞ ( z ln ⁡ i n ) n \left( 5 \right)\,\,\,\sum\limits_{n = 1}^\infty {ch\left( { {i \over n}} \right)\left( {z - 1} \right)^n } ;\,\,\,\left( 6 \right)\,\,\,\sum\limits_{n = 1}^\infty {\left( { {z \over {\ln in}}} \right)^n } (5)n=1ch(ni)(z1)n;(6)n=1(lninz)n

4.1.3 证明题

(1)证明题1

  如果 ∑ n = 0 ∞ c n z n \sum\limits_{n = 0}^\infty {c_n z^n } n=0cnzn 的收敛半径为 R R R ,证明 ∑ n = 0 ∞ ( R e c n ) z n \sum\limits_{n = 0}^\infty {\left( { {\mathop{\rm Re}\nolimits} c_n } \right)z^n } n=0(Recn)zn 的收敛半径 ≥ R \ge R R

(2)证明题2

  证明:如果 lim ⁡ n → ∞ c n + 1 c n \mathop {\lim }\limits_{n \to \infty } { {c_{n + 1} } \over {c_n }} nlimcncn+1 存在( ≠ 0 \ne 0 =0 ),下列三个幂级数具有相同的收敛半径。 ∑ n = 0 ∞ c n z n ;       ∑ n = 0 ∞ c n n + 1 z n ;      ∑ n = 0 ∞ n c n z n \sum\limits_{n = 0}^\infty {c_n z^n } ;\,\,\,\,\,\sum\limits_{n = 0}^\infty { { {c_n } \over {n + 1}}z^n } ;\,\,\,\,\sum\limits_{n = 0}^\infty {nc_n z^n } n=0cnzn;n=0n+1cnzn;n=0ncnzn

(3)证明题3

∑ n = 0 ∞ c n \sum\limits_{n = 0}^\infty {c_n } n=0cn 收敛,而 ∑ n = 0 ∞ ∣ c n ∣ \sum\limits_{n = 0}^\infty {\left| {c_n } \right|} n=0cn 发散,证明 ∑ n = 0 ∞ c n z n \sum\limits_{n = 0}^\infty {c_n z^n } n=0cnzn 的收敛半径 R = 1 R = 1 R=1


● 相关图表链接:

猜你喜欢

转载自blog.csdn.net/zhuoqingjoking97298/article/details/124210847