pytorch代码实现注意力机制之ShuffleAttention

ShuffleAttention注意力机制

当前的 CNN 中的 attention 机制主要包括:channel attention 和 spatial attention,当前一些方法(GCNet 、CBAM 等)通常将二者集成,容易产生 converging difficulty 和 heavy computation burden 的问题。尽管 ECANet 和 SGE 提出了一些优化方案,但没有充分利用 channel 和 spatial 之间的关系。因此,作者提出一个问题 “ Can one fuse different attention modules in a lighter but more efficient way? ”

为解决这个问题,作者提出了 shuffle attention,整体框架如下图所示。可以看出首先将输入的特征分为g组,然后每一组的特征进行split,分成两个分支,分别计算 channel attention 和 spatial attention,两种 attention 都使用全连接 + sigmoid 的方法计算。接着,两个分支的结果拼接到一起,然后合并,得到和输入尺寸一致的 feature map。 最后,用一个 shuffle 层进行处理。
结构原理图

代码如下:

import numpy as np
import torch
from torch import nn
from torch.nn import init
from torch.nn.parameter import Parameter

# https://arxiv.org/pdf/2102.00240.pdf
class ShuffleAttention(nn.Module):

    def __init__(self, channel=512,reduction=16,G=8):
        super().__init__()
        self.G=G
        self.channel=channel
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.gn = nn.GroupNorm(channel // (2 * G), channel // (2 * G))
        self.cweight = Parameter(torch.zeros(1, channel // (2 * G), 1, 1))
        self.cbias = Parameter(torch.ones(1, channel // (2 * G), 1, 1))
        self.sweight = Parameter(torch.zeros(1, channel // (2 * G), 1, 1))
        self.sbias = Parameter(torch.ones(1, channel // (2 * G), 1, 1))
        self.sigmoid=nn.Sigmoid()


    def init_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                init.kaiming_normal_(m.weight, mode='fan_out')
                if m.bias is not None:
                    init.constant_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                init.constant_(m.weight, 1)
                init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                init.normal_(m.weight, std=0.001)
                if m.bias is not None:
                    init.constant_(m.bias, 0)


    @staticmethod
    def channel_shuffle(x, groups):
        b, c, h, w = x.shape
        x = x.reshape(b, groups, -1, h, w)
        x = x.permute(0, 2, 1, 3, 4)

        # flatten
        x = x.reshape(b, -1, h, w)

        return x

    def forward(self, x):
        b, c, h, w = x.size()
        #group into subfeatures
        x=x.view(b*self.G,-1,h,w) #bs*G,c//G,h,w

        #channel_split
        x_0,x_1=x.chunk(2,dim=1) #bs*G,c//(2*G),h,w

        #channel attention
        x_channel=self.avg_pool(x_0) #bs*G,c//(2*G),1,1
        x_channel=self.cweight*x_channel+self.cbias #bs*G,c//(2*G),1,1
        x_channel=x_0*self.sigmoid(x_channel)

        #spatial attention
        x_spatial=self.gn(x_1) #bs*G,c//(2*G),h,w
        x_spatial=self.sweight*x_spatial+self.sbias #bs*G,c//(2*G),h,w
        x_spatial=x_1*self.sigmoid(x_spatial) #bs*G,c//(2*G),h,w

        # concatenate along channel axis
        out=torch.cat([x_channel,x_spatial],dim=1)  #bs*G,c//G,h,w
        out=out.contiguous().view(b,-1,h,w)

        # channel shuffle
        out = self.channel_shuffle(out, 2)
        return out

猜你喜欢

转载自blog.csdn.net/DM_zx/article/details/132302039