拉格朗日方程的三种推导方法之基于达朗贝尔原理推导

拉格朗日方程是分析力学中的重要方程,其地位相当于牛顿第二定律之于牛顿力学。

达朗贝尔原理由法国物理学家与数学家让•达朗贝尔发现并以其命名。达朗贝尔原理表明:对于任意物理系统,所有惯性力或施加的外力,经过符合约束条件的虚位移,所作的虚功的总合为零。即:
δ W = i ( F i + I i ) δ r i = 0 (1) \delta W=\sum\limits_{i}{\left( {{\mathbf{F}}_{i}}+{{\mathbf{I}}_{i}} \right)}\cdot \delta {{\mathbf{r}}_{i}}=0\tag{1}
其中 I i {{\mathbf{I}}_{i}} 为惯性力, I i = m i a i {{\mathbf{I}}_{i}}=-{{m}_{i}}{{\mathbf{a}}_{i}} F i {{\mathbf{F}}_{i}} 为粒子所受外力, δ r i \delta {{\mathbf{r}}_{i}} 为符合系统约束的虚位移。
设粒子 P i {{P}_{i}} 的位置 r i {{\mathbf{r}}_{i}} 为广义坐标 q 1 , q 2 , , q n {{q}_{1}},{{q}_{2}},\cdots ,{{q}_{n}} 与时间 t t 的函数:
r i = P i ( q 1 , q 2 , , q n , t ) (2) {{\mathbf{r}}_{i}}={{P}_{i}}\left( {{q}_{1}},{{q}_{2}},\cdots ,{{q}_{n}},t \right)\tag{2}
则虚位移可以表示为:
δ r i = j r i q j δ q j (3) \delta {{\mathbf{r}}_{i}}=\sum\limits_{j}{\frac{\partial {{\mathbf{r}}_{i}}}{\partial {{q}_{j}}}}\delta {{q}_{j}}\tag{3}
粒子的速度 v i = v i ( q 1 , q 2 , , q n , q ˙ 1 , q ˙ 2 , , q ˙ n , t ) {{\mathbf{v}}_{i}}={{\mathbf{v}}_{i}}\left( {{q}_{1}},{{q}_{2}},\cdots ,{{q}_{n}},{{{\dot{q}}}_{1}},{{{\dot{q}}}_{2}},\cdots ,{{{\dot{q}}}_{n}},t \right) 可表示为:
v i = d r i d t = r i t + j r i q j q ˙ j (4) {{\mathbf{v}}_{i}}=\frac{d{{\mathbf{r}}_{i}}}{dt}=\frac{\partial {{\mathbf{r}}_{i}}}{\partial t}+\sum\limits_{j}{\frac{\partial {{\mathbf{r}}_{i}}}{\partial {{q}_{j}}}}{{\dot{q}}_{j}}\tag{4}
取速度对于广义速度的偏微分:
v i q ˙ j = r i q j (5) \frac{\partial {{\mathbf{v}}_{i}}}{\partial {{{\dot{q}}}_{j}}}=\frac{\partial {{\mathbf{r}}_{i}}}{\partial {{q}_{j}}}\tag{5}
首先转化方程(1)的加速度项。将方程(3)代入:
i m i a i δ r i = i , j m i a i r i q j δ q j (6) \sum\limits_{i}{{{m}_{i}}}{{\mathbf{a}}_{i}}\cdot \delta {{\mathbf{r}}_{i}}=\sum\limits_{i,j}{{{m}_{i}}}{{\mathbf{a}}_{i}}\cdot \frac{\partial {{\mathbf{r}}_{i}}}{\partial {{q}_{j}}}\delta {{q}_{j}}\tag{6}
应用乘积法则:
i , j m i a i r i q j δ q j = i , j ( d d t ( m i v i r i q j ) m i v i d d t ( r i q j ) ) δ q j (7) \sum\limits_{i,j}{{{m}_{i}}}{{\mathbf{a}}_{i}}\cdot \frac{\partial {{\mathbf{r}}_{i}}}{\partial {{q}_{j}}}\delta {{q}_{j}}=\sum\limits_{i,j}{\left( \frac{d}{dt}\left( {{m}_{i}}{{\mathbf{v}}_{i}}\cdot \frac{\partial {{\mathbf{r}}_{i}}}{\partial {{q}_{j}}} \right)-{{m}_{i}}{{\mathbf{v}}_{i}}\cdot \frac{d}{dt}\left( \frac{\partial {{\mathbf{r}}_{i}}}{\partial {{q}_{j}}} \right) \right)}\delta {{q}_{j}}\tag{7}
注意到 r i q j \frac{\partial {{\mathbf{r}}_{i}}}{\partial {{q}_{j}}} 的参数为 q 1 , q 2 , , q n , t {{q}_{1}},{{q}_{2}},\cdots ,{{q}_{n}},t ,而速度 v i {{\mathbf{v}}_{i}} 的参数为 q 1 , q 2 , , q n , q ˙ 1 , q ˙ 2 , , q ˙ n , t {{q}_{1}},{{q}_{2}},\cdots ,{{q}_{n}},{{\dot{q}}_{1}},{{\dot{q}}_{2}},\cdots ,{{\dot{q}}_{n}},t ,所以,
d d t ( r i q j ) = ( t + k q ˙ k q k ) ( r i q j ) = 2 r i q j t + k 2 r i q j q k q ˙ k (8) \frac{d}{dt}\left( \frac{\partial {{\mathbf{r}}_{i}}}{\partial {{q}_{j}}} \right)=\left( \frac{\partial }{\partial t}+\sum\limits_{k}{{{{\dot{q}}}_{k}}}\frac{\partial }{\partial {{q}_{k}}} \right)\left( \frac{\partial {{\mathbf{r}}_{i}}}{\partial {{q}_{j}}} \right)=\frac{{{\partial }^{2}}{{\mathbf{r}}_{i}}}{\partial {{q}_{j}}\partial t}+\sum\limits_{k}{\frac{{{\partial }^{2}}{{\mathbf{r}}_{i}}}{\partial {{q}_{j}}\partial {{q}_{k}}}}{{\dot{q}}_{k}}\tag{8}
v i q j = q j ( r i t + k r i q k q ˙ k ) = 2 r i q j t + k 2 r i q j q k q ˙ k (9) \frac{\partial {{\mathbf{v}}_{i}}}{\partial {{q}_{j}}}=\frac{\partial }{\partial {{q}_{j}}}\left( \frac{\partial {{\mathbf{r}}_{i}}}{\partial t}+\sum\limits_{k}{\frac{\partial {{\mathbf{r}}_{i}}}{\partial {{q}_{k}}}}{{{\dot{q}}}_{k}} \right)=\frac{{{\partial }^{2}}{{\mathbf{r}}_{i}}}{\partial {{q}_{j}}\partial t}+\sum\limits_{k}{\frac{{{\partial }^{2}}{{\mathbf{r}}_{i}}}{\partial {{q}_{j}}\partial {{q}_{k}}}}{{\dot{q}}_{k}}\tag{9}
因此,以下关系式成立:
d d t ( r i q j ) = v i q j (10) \frac{d}{dt}\left( \frac{\partial {{\mathbf{r}}_{i}}}{\partial {{q}_{j}}} \right)=\frac{\partial {{\mathbf{v}}_{i}}}{\partial {{q}_{j}}}\tag{10}
将方程(5)与(10)代入,加速度项成为:
i , j m i a i r i q j δ q j = i , j ( d d t ( m i v i v i q ˙ j ) m i v i v i q j ) δ q j (11) \sum\limits_{i,j}{{{m}_{i}}}{{\mathbf{a}}_{i}}\cdot \frac{\partial {{\mathbf{r}}_{i}}}{\partial {{q}_{j}}}\delta {{q}_{j}}=\sum\limits_{i,j}{\left( \frac{d}{dt}\left( {{m}_{i}}{{\mathbf{v}}_{i}}\cdot \frac{\partial {{\mathbf{v}}_{i}}}{\partial {{{\dot{q}}}_{j}}} \right)-{{m}_{i}}{{\mathbf{v}}_{i}}\cdot \frac{\partial {{\mathbf{v}}_{i}}}{\partial {{q}_{j}}} \right)}\delta {{q}_{j}}\tag{11}
代入动能表达式:
T = i 1 2 m i v i v i (12) T=\sum\limits_{i}{\frac{1}{2}}{{m}_{i}}{{\mathbf{v}}_{i}}\cdot {{\mathbf{v}}_{i}}\tag{12}
则加速度项与动能的关系为:
i , j m i a i r i q j δ q j = j ( d d t ( T q ˙ j ) T q j ) δ q j (13) \sum\limits_{i,j}{{{m}_{i}}}{{\mathbf{a}}_{i}}\cdot \frac{\partial {{\mathbf{r}}_{i}}}{\partial {{q}_{j}}}\delta {{q}_{j}}=\sum\limits_{j}{\left( \frac{d}{dt}\left( \frac{\partial T}{\partial {{{\dot{q}}}_{j}}} \right)-\frac{\partial T}{\partial {{q}_{j}}} \right)}\delta {{q}_{j}}\tag{13}
然后转换方程(1)的外力项代入方程(3)得:
i F i δ r i = i , j F i r i q j δ q j = j F j δ q j (14) \sum\limits_{i}{{{\mathbf{F}}_{i}}}\cdot \delta {{\mathbf{r}}_{i}}=\sum\limits_{i,j}{{{\mathbf{F}}_{i}}}\cdot \frac{\partial {{\mathbf{r}}_{i}}}{\partial {{q}_{j}}}\delta {{q}_{j}}=\sum\limits_{j}{{{\mathcal{F}}_{j}}}\delta {{q}_{j}}\tag{14}
其中 F \mathcal{F} 是广义力:
F j = i F i r i q j (15) {{\mathcal{F}}_{j}}=\sum\limits_{i}{{{\mathbf{F}}_{i}}}\cdot \frac{\partial {{\mathbf{r}}_{i}}}{\partial {{q}_{j}}}\tag{15}
将方程(13)与(14)代入方程(1)可得:
j ( d d t ( T q ˙ j ) T q j F j ) δ q j = 0 (16) \sum\limits_{j}{\left( \frac{d}{dt}\left( \frac{\partial T}{\partial {{{\dot{q}}}_{j}}} \right)-\frac{\partial T}{\partial {{q}_{j}}}-{{\mathcal{F}}_{j}} \right)}\delta {{q}_{j}}=0\tag{16}
假设所有的广义坐标都相互独立,则所有的广义坐标的虚位移也都相互独立。由于这些虚位移都是任意设定的,只有满足下述方程,才能使方程(16)成立:
d d t ( T q ˙ j ) T q j F j = 0 (17) \frac{d}{dt}\left( \frac{\partial T}{\partial {{{\dot{q}}}_{j}}} \right)-\frac{\partial T}{\partial {{q}_{j}}}-{{\mathcal{F}}_{j}}=0\tag{17}
这系统的广义力与广义位势 V V 之间的关系式为:
F j = d d t ( V q ˙ j ) V q j (18) {{\mathcal{F}}_{j}}=\frac{d}{dt}\left( \frac{\partial V}{\partial {{{\dot{q}}}_{j}}} \right)-\frac{\partial V}{\partial {{q}_{j}}}\tag{18}
代入得:
d d t ( ( T V ) q ˙ j ) ( T V ) q j = 0 (19) \frac{d}{dt}\left( \frac{\partial (T-V)}{\partial {{{\dot{q}}}_{j}}} \right)-\frac{\partial (T-V)}{\partial {{q}_{j}}}=0\tag{19}
定义拉格朗日量 L L 为动能与势能之差,可得拉格朗日方程:
d d t ( L q ˙ j ) L q j = 0 (20) \frac{d}{dt}\left( \frac{\partial L}{\partial {{{\dot{q}}}_{j}}} \right)-\frac{\partial L}{\partial {{q}_{j}}}=0\tag{20}

发布了26 篇原创文章 · 获赞 14 · 访问量 4906

猜你喜欢

转载自blog.csdn.net/jaysur/article/details/103910033